Polar Narcosis in Aquatic Organisms
نویسندگان
چکیده
The majority of industrial organic chemicals lack identifiable structural characteristics that result in specific biological activity. These nonpolar-nonelectrolytes are acutely toxic to aquatic organisms via a nonspecific mode of action termed narcosis. The toxicity of industrial chemicals eliciting nonpolar narcosis can be reliably predicted by log P (baseline toxicity models). Using single chemical and joint toxic action models, several research groups have reported classes of polar compounds (for example, esters, phenols, and anilines) that elicit a narcosis-like syndrome; however, they are more acutely toxic than what is predicted using baseline toxicity models. An assessment of rainbow trout (Salmo gairdneri) in vivo respiratory-cardiovascular responses during intoxication by polar narcotic phenol and aniline derivatives established a toxicity syndrome unique to that elicited by nonpolar narcotics. This finding further suggests a mode of action unique to polar narcotics and supports the use of structure-activity relationships specific for these compounds. The proposition that there may be multiple mechanisms or sites of narcotic action is compatible with recent studies concerning the cellular and molecular mechanisms of anesthetic action.
منابع مشابه
Rules for distinguishing toxicants that cause type I and type II narcosis syndromes.
Narcosis is a nonspecific reversible state of arrested activity of protoplasmic structures caused by a wide variety of organic chemicals. The vast majority of industrial organic chemicals can be characterized by a baseline structure-toxicity relationship as developed for diverse aquatic organisms, using only the n-octanol/water partition coefficient as a descriptor. There are, however, many app...
متن کاملPotential for photoenhanced toxicity of spilled oil in Prince William Sound and Gulf of Alaska waters.
Photoenhanced toxicity is the increase in the toxicity of a chemical in the presence of ultraviolet light (UV) compared to a standard laboratory test conducted with fluorescent lighting (minimal UV). Oil products, weathered oil, and specific polycyclic aromatic compounds present in oil are 2 to greater than 1000 times more toxic in the presence of UV. The photoenhanced toxicity of oil to fish a...
متن کاملResponse characteristics of an aquatic biomonitor used for rapid toxicity detection.
The response characteristics of an aquatic biomonitor that detects toxicity by monitoring changes in bluegill (Lepomis macrochirus Rafinesque) ventilatory and movement patterns were evaluated in single chemical laboratory studies at concentrations near the 96-h LC(50) concentration and at the EILATox-Oregon Workshop in sequential tests of multiple unknown samples. Baseline data collected prior ...
متن کاملThe combined toxic effects of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata.
This paper presents the toxicity data of 10 nonpolar narcotic chemicals on Pseudokirchneriella subcapitata (green algae) assessed by a new algal toxicity testing technique conducted under air-tight environment. Based on DO production, median effective concentration (EC50) varies from 1.73 mg/L (1-octanol) to 8,040 mg/L (2-propanol). The endpoint of algal growth rate reveals similar sensitivity ...
متن کاملEvaluation of acute-to-chronic ratios of fish and Daphnia to predict acceptable no-effect levels
BACKGROUND Acute-to-chronic extrapolation is an important approach to predict acceptable no-effect levels from acute data which has some uncertainties, but is valuable for risk assessment of chemical substances. With regard to the still limited and heterogenic data of chronic fish tests, conclusions on aquatic hazard estimation need to be checked and the question arises whether the chronic toxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017